Class 7: Geodesics

In this class we will discuss the equation of a
geodesic in a curved space, how particles and
light rays move in a curved space-time, and how
this motion connects to Newton’s Laws




Class 7: Geodesics

At the end of this session you should be able to ...

e ...recognize the geodesic equation, which connects the
motion of particles to the space-time metric, using Christoffel
symbols

e ... calculate the Christoffel symbols in some simple cases,
such as in 2D spaces or the weak-field limit

e ...recognize that different parameters can be used to
describe the world line of particles and light rays

e ...understand how GR connects to Newton’s Laws for weak
fields, and how the time co-ordinate behaves in this limit



Geodesics

* A fundamental question for General Relativity to answer is,
how does an object move in a gravitational field?

https://mathspig.wordpress.com/2014/01/23/2-one-rule-aerial-skiers-cannot-break/

* How can we find an object’s world line x* (1) in terms of its
proper time 7, when freely falling in the Earth’s frame x*?



Geodesics

e A “straight line on a curved surface” is called a geodesic,
which minimizes the distance between 2 points

* e.g., geodesics on a spherical surface are “great circles”

parallel of
latitude great
circle

* In GR, objects travel on a geodesic in curved space-time,
which extremizes the proper time between 2 points



Geodesics

* The same mathematics hence describes both the geometry
of curved spaces and the geometry of space-time

* This maths was Einstein’s biggest challenge in developing GR!

Do not worry about your difficulties in
mathematics, | assure you that mine are
greater.

(Albert Einstein)

https://www.pinterest.com.au/pin/407083253789581007/



Geodesic equation

* Objects move on a path which extremizes the proper time

* Since ds? = —c?dt?, the proper time along a path is given in
terms of the metric by%f\/—ds = %f\/—gw dxH dxV

* We can mathematically find the path x*(7) that extremizes
the value of this integral. The result is the geodesic equation:
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Geodesic equation

d?xk +rH dx® dx?
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* What’s the physical meaning of =07

* |t’s the equation of motion of freely-falling particles in a
curved space-time. Particles travelling on a geodesic feel no
forces
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https://www.quantum-bits.org/?p=963



Geodesic equation
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What'’s the physical meaning of

The indices k and A are summed over, hence this relation
represents 4 differential equations, which can be solved to
determine the path of a particle through space-time, x*(7)

d?xH

If F,f/l = 0, then the particle has zero acceleration —- =0
dt
and is moving uniformly in an inertial frame—-so I' = 0 in the

absence of gravity

Hence F’,ﬁl represents a “force” due to gravity, which is
curving the path of the particle through space-time



Christoffel symbols

The values of F ., are determined by the space-time metric

uv, as FKA — Eg B (0aGvi + 0 Gav — Oy Gxa)

This object T'* 1 1S so important that it has a name —the
Christoffel symbols

What is g"'V? If g,,,, is written as a matrix, then g#” is the
inverse of the matrix
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The index v is summed over



Christoffel symbols

 The problem is that, since each index can take on 4 values,
I‘,ﬁ consists of 4x4x4 = 64 different functions in general!

https://www.edvardmunch.org/the-scream.jsp

* However, it is easier for the special cases we’ll consider



Christoffel symbols

e Space-time curvature tells matter how to move

Metric World line
uv x* (1)
Christoffel Geodesic

symbols T, equations




Christoffel symbols

There is a calculational trick which can make it easier to
determine the Christoffel symbols in some cases ...

d?xH i dx® dx?
dt? i

KA dt dt =0

The geodesic equation is:

A mathematically equivalent version of the geodesic

ZxV 1 dx’ dx
equationis: g,, ——- — (alg‘m 6ﬂg,d) P 0

Sometimes it’s easier to evaluate the second equation and
determine F’f/l by comparison with the first equation, rather

than to evaluate I'l, = %g‘“’(a,lgwc + 09y — Oy Gic1)



Motion in a weak field

* An important special case is a particle moving slowly in a
weak, static gravitational field

* In this case, the space-time metric can be written in the

-1 0 0 0
form g, (x') = 1, + by, (xY), where g, = ( S 8) is

00 0 1
the Minkowski metric, and |hu1/| <« 1is asmall perturbation

which depends only on spatial co-ordinates x*, not time

i

: : dx dx© .
* For a slow-moving particle, = K - where i = {1,2,3}




Motion in a weak field

Using these approximations, the geodesic equations imply
dzxi . C2 ahtt
that dt2 = 2 0Xj

We can compare this relation to Newton’s laws in a
2 -

. . . d - -
gravitational potential ¢, dtf = —V¢p(x)

We hence deduce that g, = —1 — 2¢p/c?

For a clock at rest in a weak field, co-ordinate and proper
time are related by dt = \/— g dt = \/1 + 2¢p/c? dt




Geodesics for light rays

* For alight ray, there is a subtlety which wrecks our previous
derivation —ds = dt = 0. We cannot describe the path as a
function of 7, since T = 0 always! (it’s a “null geodesic”)

 We need to parameterize the world line by a different co-
ordinate called the “affine parameter”, x*(p)

| _d?xP oy dx® dx
. r —
We end up with the same equation, e + 1,3 dp dp




Geodesics for light rays

: dxt .
It’s useful to consider the wavevector k#* = oy in terms of

which S 4+ T, e k% = 0

In physical terms, the wavevector k* gives the frequency
(k°) and direction of motion (k') of the light ray

" . dikH
In the absence of a gravitational field, I' = 0, hence rre

0, hence k* = constant

The gravitational field “bends” the light ray according to T,
changing its direction of travel



